

Home Search Collections Journals About Contact us My IOPscience

Modulation on positions of optical absorption bands in porous Al2O3 host/Cr2O3

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J. Phys.: Condens. Matter 9 6103 (http://iopscience.iop.org/0953-8984/9/28/009)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.207 The article was downloaded on 14/05/2010 at 09:09

Please note that terms and conditions apply.

Modulation on positions of optical absorption bands in porous Al₂O₃ host/Cr₂O₃

C M Mo[†], W L Cai[†], G Chen[†], X M Li[†] and L D Zhang[‡]

 † Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, People's Republic of China
‡ Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's

republic of China

Received 11 November 1996

Abstract. The optical absorption properties of porous Al₂O₃ host/Cr₂O₃ nanocomposites were investigated. The results show that for each optical reflection spectrum, four absorption bands (p_1-p_4) occur in the wavelength range 200–800 nm. The p₂, p₃ and p₄ bands are induced by the Cr³⁺ 3d³ electronic transitions from the ⁴A₂ ground-state energy level to the excited-state energy levels: ⁴T₁, ⁴T₂ and ⁴T'₂ (⁴T'₂ is formed from splitting of ⁴T₂), respectively. The appearance of p₁ is closely related to the Cr³⁺ and Cr⁴⁺ ions. For porous Al₂O₃ host/Cr₂O₃ nanocomposites, which are formed by assembling the porous Al₂O₃ host with nano-Cr₂O₃ particles, the positions of absorption bands can be modulated by means of pyrolysis of Cr(NO₃)₃ at different temperatures in air, reducing the samples in high purity H₂ and the size confinement of Cr₂O₃ particles by voids in the Al₂O₃ host. With increasing pyrolysis temperature, a blue shift of the absorption bands appears and, inversely, a red shift of the absorption bands takes place when heating the samples in H₂.

1. Introduction

In 1963 McClure [1] reported the polarized optical absorption spectrum of Cr_2O_3 in thin single-crystal plates at room temperature. He observed that three optical absorption bands existed in the wavelength range 300–800 nm. He attributed two absorption bands (p₂ and p₃) located in the range 400–800 nm to the Cr^{3+} 3d³ electronic transitions from the ⁴A₂ ground-state level to the excited-state levels, ⁴T₁ and ⁴T₂, respectively. The origin of the optical absorption band (p₁), appearing in the ultraviolet light range, was not explained. Up to now, the optical absorption on nano-Cr₂O₃ has not been reported. In this paper, the characterizations of optical absorption for porous Al₂O₃/Cr₂O₃ nanocomposites were investigated and compared with those of nanostructured Cr₂O₃ bulks of material. The aim of this paper is to modulate the positions of optical absorption bands by means of assembling the porous Al₂O₃ host with nano-Cr₂O₃ particles, pyrolysis at various temperatures in air for Cr(NO₃)₃ and reducing the samples in H₂.

2. Sample preparation and experimental studies

Nano- Cr_2O_3 powders with different particle diameters, *d*, were prepared by pyrolysis of analytically pure $Cr(NO_3)_3 \cdot 9H_2O$ at different temperatures (400, 700, 800, 900, 1000 and 1100 °C, respectively) for 4 h in air. The nanostructured Cr_2O_3 bulks with 13 mm

0953-8984/97/286103+09\$19.50 © 1997 IOP Publishing Ltd

6103

diameter were performed by compacting the powder under a uniaxial pressure of 360 MPa. The porous Al₂O₃ host/Cr₂O₃ nanocomposites were prepared by the following procedure: porous Al₂O₃ host samples were obtained by compacting the powder of α -Al₂O₃ with $d_0 \sim 84$ nm using a uniaxial pressure of 360 MPa and then annealed at 1100 °C for 4 h. After that, they were immersed in a saturated aqueous solution of Cr(NO₃)₃ for 1 h. Ions diffused into the water within the pores of Al₂O₃ bulks. After heating at 400, 700, 800, 900, 1000 and 1100 °C, respectively, in air nano-precipitates of Cr₂O₃ were formed in pores.

The x-ray diffraction was carried out on a x-ray diffractometer with CuK α radiation (type D/MAX-rA). All samples were analysed in $10^{\circ} \leq 2\theta \leq 80^{\circ}$ at 100 mA and 40 KV. The phase identification was made by means of JCPDS cards. The average particle diameters of Cr₂O₃ were calculated using Scherrers formula: $d = 0.9\lambda/\beta \cos \theta$, where $\lambda = 0.154$ nm; β (radians) is the width at half height of the diffraction peak, which is induced by the small particle and equals $\beta_m - \beta_0$, where β_m is the measured value of the width of the diffraction peak at half height and β_0 is the width of the diffraction peak at half height caused by the D/MAX- γ A diffractometer. $\beta_0 = (\pi/1800)$ rad in $20^{\circ} \leq 2\theta \leq 60^{\circ}$. Therefore, for each x-ray diffraction spectrum six diffraction peaks of Cr₂O₃ in $20^{\circ} \leq 2\theta \leq 60^{\circ}$ are chosen to measure the widths at half height ($\beta_{m1} - \beta_{m6}$). According to Scherrers formula, six *d* values are calculated, respectively. Then, the arithmetic average values of d_1-d_6 are obtained. The Scherrers formula is an approximate formula. When *d* is very small, for example, $d \leq 25$ nm, the error is about ± 2 nm. When *d* is in the range 25–60 nm, the error becomes larger, and reaches about ± 5 nm.

Diffuse reflection spectra in the wavelength range 200–800 nm were measured on a visible-ultraviolet spectrophotometer (type Shimadzu UV-240). BaSO₄ was used as a reflection reference sample. For all nanostructured Cr_2O_3 bulks and porous Al_2O_3/Cr_2O_3 nanocomposites, before heating in high purity H₂ and after heating at 600 °C in H₂ for 2 h, diffuse reflection spectra were measured.

3. Results

3.1. Phases and particle diameters of Cr_2O_3

Figure 1 shows the evolution of x-ray diffraction spectra for nanostructured Cr_2O_3 bulks (sample 1) (a), porous Al₂O₃/Cr₂O₃ nanocomposites (sample 2) (b), sample 1 after heating in H₂ (c) and sample 2 after heating in H₂ (d), respectively. From figure 1, it can be seen that no phase transformation takes place as the pyrolysis temperature T_p increases. The phase identification indicates that for nanostructured bulks the phase is hexagonal Cr₂O₃ and for porous nanocomposites the phases are the mixture of α -Al₂O₃ and hexagonal Cr₂O₃. Heating nanostructured Cr₂O₃ bulks and porous Al₂O₃/Cr₂O₃ nanocomposites in pure H₂ does not cause phase transformations to take place.

Table 1 gives the particle diameters, d of Cr₂O₃ formed at different pyrolysis temperatures. It is clear that for porous nanocomposites d does not change with increasing T_p , but for nanostructured bulks d increases with the increase of T_p and becomes larger than that of porous nanocomposites.

3.2. Positions of absorption bands

Optical reflection spectra of nanostructured Cr_2O_3 bulks for different pyrolysis temperatures without heating in H₂ and after heating at 600 °C in H₂ for 2 h are shown in figures 2(a) and (b), respectively. It can be seen that four absorption bands (p₁, p₂, p₃ and p₄) occur

	$T_p(^{\circ}\mathrm{C})$																					
	400, 4 h				700, 4 h			800, 4 h			900, 4 h			1000, 12 h			1000, 4 h			1100, 4 h		
Samples	d	<i>p</i> ₂	<i>p</i> ₃	d	p_2	<i>p</i> ₃	d	p_2	<i>p</i> ₃	d	<i>p</i> ₂	<i>p</i> ₃	d	I	p_2	<i>p</i> ₃	d	p_2	<i>p</i> ₃	d	p_2	<i>p</i> ₃
Nanostructured bulks	26 Cr ₂ O ₃			37	37 460 596 Cr ₂ O ₃		43 Cr ₂ O ₃		48	48 Cr ₂ O ₃			56 Cr ₂ O ₃			51 460 596 Cr ₂ O ₃			58 460 596 Cr ₂ O ₃			
Nanostructured bulks after heating in H ₂ for 2 h		464 Cr <u>2</u>	600 ₂ O ₃	37	464 Cr ₂	600 O ₃							5	6 4	464 Cr ₂ (600 D ₃				58	464 Cr2	600 2O ₃
Porous nanocomposites	20 Ci	$\begin{array}{c} 20\\ Cr_2O_3+Al_2O_3\end{array}$			$\begin{array}{ccc} 20 & 460 & 596 \\ Cr_2O_3 + Al_2O_3 \end{array}$			$\begin{array}{cccc} 22 & 460 & 596 \\ Cr_2O_3 + Al_2O_3 \end{array}$			$\begin{array}{cccc} 21 & 456 & 596 \\ Cr_2O_3 + Al_2O_3 \end{array}$			$\begin{array}{cccc} 23 & 450 & 590 \\ Cr_2O_3 + Al_2O_3 \end{array}$			$\begin{array}{cccc} 22 & 453 & 590 \\ Cr_2O_3 + Al_2O_3 \end{array}$			$\begin{array}{cccc} 22 & 450 & 590 \\ Cr_2O_3 + Al_2O_3 \end{array}$		
Porous nanocomposites after heating in H_2 for 2 h	20 Cr	2 0 3 -	+ Al ₂ O ₃	20 Ci	460 ∶₂O3 -	598 + Al ₂ O ₃	22 Cr	465 2O3	$+ Al_2O_3$	21 Cr	460 ₂ O ₃ -	598 ⊦ Al ₂ O ₃	2	21 4 Cr ₂ C	450 D ₃ +	594 - Al ₂ O ₃						
Single crystal Cr ₂ O ₃	<i>p</i> ₂ =	= 471	nm; p ₃ =	= 596-	610 n	m at roon	n temp	eratu	re [1]													

Table 1. Phases, particle diameters of $Cr_2O_3(d)$ and peak positions of absorption bands. The positions p_2 and p_3 , and the diameters d are in nanometres.

6106

Figure 1. X-ray diffraction spectra of nanostructured Cr_2O_3 bulks (a), porous Al_2O_3/Cr_2O_3 nanocomposites (b), nanostructured Cr_2O_3 bulks after heating in H_2 at 600 °C for 2 h (c) and porous Al_2O_3/Cr_2O_3 nanocomposites after heating at 600 °C in H_2 for 2 h (d). 1, $T_p = 700$ °C; 2, $T_p = 1100$ °C; α , $\alpha - Al_2O_3$; Δ , Cr_2O_3 .

in the wavelength range 200–800 nm for each curve. Their peak positions do not change with increasing T_p . The p₁ band is situated in the ultraviolet light range 200–400 nm. The p₂, p₃ and p₄ bands possess peak positions of 460, 596 and ~710 nm, respectively. From table 1, it can be observed that reducing in H₂ causes the p₂ and p₃ peaks to shift towards the long wavelengths (red shifts) for all nanostructured Cr₂O₃ bulks.

Figure 3 presents the optical reflection spectra of porous Al₂O₃/Cr₂O₃ nanocomposites made by pyrolysis in air without heating in H₂ (a) and after heating at 600 °C in H₂ for 2 h (b), respectively. Curves 1–5 and 7 correspond to T_p of 400, 700, 800, 900, 1000 and 1100 °C for 4 h, respectively. Curve 6 corresponds to 1000 °C for 12 h. Clearly, four absorption bands (p₁-p₄) exist in each curve. In curve 1 the absorption bands become too weak to be observed. Figure 3(a) and table 1 show that by increasing T_p from 700 to 1100 °C, the p₂, p₃ and p₄ bands of porous Al₂O₃/Cr₂O₃ nanocomposites exhibit blue shifts. Namely, their positions shift from 460, 596 and ~710 nm to 450, 590 and ~700 nm, respectively. Moreover, the absorption edge at the long-wavelength side of the p₁ band presents a blue shift.

Figure 2. Optical reflection spectra of nanostructured Cr_2O_3 bulks without heating in H₂ (a) and after heating at 600 °C in H₂ for 2 h (b). The arrows show the peak positions (a) Curves 1–4 correspond to a T_p of 400, 700, 1000 and 1100 °C for 4 h, respectively. (b) Curves 1–4 correspond to 400 °C for 4 h, 700 °C for 4 h, 1000 °C for 12 h and 1100 °C for 4 h, respectively.

For porous Al₂O₃/Cr₂O₃ nanocomposites, after heating at 600 °C in H₂ for 2 h, there also exist four absorption bands in each reflection spectrum, as shown in figure 3(b). The peak positions of the p₂ and p₃ bands are listed in table 1. Table 1 demonstrates that: (1) when $T_p \ge 900$ °C, the p₂ and p₃ bands of porous Al₂O₃/Cr₂O₃ nanocomposites without heating in H₂ display blue shifts in comparison with those of nanostructured Cr₂O₃ bulks after heating in H₂; (2) for porous nanocomposites after heating at 600 °C in H₂ the p₂ and p₃ bands shift to long wavelengths (red shift) in comparison with those of porous nanocomposites without heating in H₂.

Figure 3. Optical reflection spectra of porous Al_2O_3/Cr_2O_3 nanocomposites without heating in H₂ (a) and after heating at 600 °C in H₂ for 2 h (b). The arrows show the peak positions (a) Curves 1–5 and 7 correspond to the pyrolysis conditions of 400, 700, 800, 900, 1000 and 1100 °C for 4 h, respectively. Curve 6 corresponds to 1000 °C for 12 h. (b) Curves 1–4 correspond to 700 °C for 4 h, 800 °C for 4 h, 900 °C for 4 h and 1000 °C for 12 h, respectively.

4. Discussion

4.1. Mechanisms of nano- Cr_2O_3 absorption bands

McClure [1] observed three optical absorption bands (p_1-p_3) in the wavelength range 350–800 nm at room temperature for Cr_2O_3 single crystal. He attributed the p_2 and p_3 peaks to Cr^{3+} 3d³ electronic transitions from the ground-state energy level 4A_2 to the excited-state energy levels 4T_1 and 4T_2 , respectively. Moreover, he pointed out that strain inside the

 Cr_2O_3 crystal led to the 4T_2 peak splitting into two peaks because the 4T_2 energy level was split into two energy levels. For nanostructured Cr_2O_3 bulks and porous Al_2O_3/Cr_2O_3 nanocomposites, four absorption bands appear in the wavelength range 200–800 nm (p₁– p₄) at room temperature and the positions of p₂ and p₃ shift to the shorter wavelengths in comparison with those of Cr_2O_3 single crystals (see table 1). Therefore, the p₂ and p₃ bands for nanostructured Cr_2O_3 bulks and porous Al_2O_3/Cr_2O_3 nanocomposites can be attributed to the Cr^{3+} 3d³ electronic transitions from 4A_2 to 4T_1 and 4T_2 , respectively. Since nano- Cr_2O_3 particle, resulting in severe distorsions of the O^{2-} octahedrons around Cr^{3+} . This distorsion causes the 4T_2 energy level to be split into two energy levels. Therefore, the 4T_2 peak is split into two peaks (p₃ and p₄).

The p_1 band is located in the ultraviolet range. Hommerich *et al* [2] indicated that the Cr⁴⁺ and Cr⁶⁺ ions could induce strong ultraviolet absorption. Hou *et al* [3] reported that there existed about 1% CrO₂ in Cr₂O₃ formed by pyrolysis of Cr(NO₃)₃. Therefore, it can be supposed that the p_1 band in our experiments is closely related to the Cr⁴⁺ ions. This does not imply, however, that the p_1 band is mainly caused by the Cr⁴⁺ ions. From figures 3(a) and (b), it is clear that when the pyrolysis temperature is 700 or 800 °C, the p_1 band of porous Al₂O₃/Cr₂O₃ nanocomposites after heating in H₂ becomes obviously strong in comparison with that of porous Al₂O₃/Cr₂O₃ nanocomposites without heating in H₂. As we know, reducing in H₂ probably causes Cr⁴⁺ to change into Cr³⁺. If the p_1 band is induced only by the Cr⁴⁺ ions, the p_1 band for samples after reducing in H₂ should decrease. Therefore, the intensity increase of the p_1 band suggests that the p_1 band cannot be attributed only to the Cr⁴⁺ ions and thus it is possible that the p_1 band is associated with both the Cr⁴⁺ and Cr³⁺ ions.

4.2. Movement of peak positions of absorption bands

With increasing T_p all absorption bands of porous Al₂O₃/Cr₂O₃ nanocomposites exhibit blue shifts (see figure 3(a) and table 1), but for nanostructured Cr_2O_3 bulks all bands do not move (see figure 2(a) and table 1). As we know, the position of each absorption band is mainly determined by the blue shift effect and the red shift effect. Before formation of nanostructured Cr_2O_3 bulks, the Cr_2O_3 powder was obtained by pyrolysis of $Cr(NO_3)_3$ in air at different temperatures. As a result, there are quite rare oxygen vacancies in Cr_2O_3 particles, because during pyrolysis enough oxygen in air is provided to form Cr₂O₃. In other words, the number of oxygen vacancies in nanostructured bulks decreases slightly with the increasing T_p . This will cause the red shift effect of the absorption band to decrease. This can be explained as follows. As we know, with decreasing D_q/B (D_q is the crystal-field strength and B is the crystal-field parameter), the spacing between the ${}^{4}A_{2}$ level and the ${}^{4}T_{1}$ level becomes smaller [5]. The existence of oxygen vacancies makes the average distance between Cr^{3+} and O^{2-} ions (R) increase; the more the oxygen vacancies, the larger R. D_a is directly proportional to r^4/R^5 , where r is the average radius of the Cr³⁺ 3d³ electronic orbit. Therefore, the increase of oxygen vacancies leads D_a to decrease. B depends on the repulsive action between electrons; the larger the repulsion, the higher the B value. The elevation of oxygen vacancies leads R to increase and the O^{2-} 2p electrons to decrease, so that the average coupling effect between Cr^{3+} 3d and O^{2-} 2p electrons becomes weak and the average screening effect of O^{2-} 2p electrons to Cr^{3+} 3d electrons descends. This induces the repulsive action between Cr^{3+} 3d electrons to be enhanced, resulting in the ascension of the average repulsion between electrons. Therefore, B ascends with increasing oxygen vacancies.

According to the above discussion, the following conclusion can be obtained. With the increase of oxygen vacancies, D_q/B decreases and, hence, the spacing between ${}^{4}A_2$ and ${}^{4}T_2$ (and ${}^{4}T_1$) descends. This will cause the red shift of the absorption bands to increase. Inversely, the decrease of the oxygen vacancies gives rise to the red shift effect to drop. This is why the red shift effect decreases with the increase of T_p .

In addition, when T_p increases from 700 to 1100 °C, *d* changes from 37 to 58 nm. This makes the blue shift effect weaken. Since Cr_2O_3 possesses a semiconductor character, the absorption spectrum of semiconductor nanocrystals is usually blue shifted relative to the bulk sample [6–9]. The blue shift is attributed to the molecular character of the wavefunction in the small particles. The atomic wavefunction overlap is smaller and the bands are flatter and narrower in the small particles than in the large ones and the bulk [4]. This implies that when decreasing the diameter of the particle, the spacing between the energy levels becomes larger. As a result, the absorption band, which arises from the electronic transitions from the lower energy level to the higher energy level, exhibits a blue shift. This is why the blue shift effect becomes weak with increasing T_p when the Cr_2O_3 particle diameter increases.

In summary, with raising T_p , both the red shift effect and the blue shift effect become weak. Therefore, for each T_p the influences of blue shift and red shift cancel out each other. This is why the absorption bands of nanostructured bulks do not move with increasing T_p .

For porous Al₂O₃/Cr₂O₃ nanocomposites, however, the Cr₂O₃ particles are formed in voids of the Al₂O₃ host by pyrolysis of Cr(NO₃)₃. In voids there is not sufficient oxygen for Cr₂O₃ to form, resulting in an absence of oxygen in Cr₂O₃ particles. This causes the fact that in Cr₂O₃ particles more oxygen vacancies exist than in the nanostructured Cr₂O₃ bulks; the higher the pyrolysis temperature, the fewer the oxygen vacancies. This causes the red shift to decrease with increasing T_p . The blue shift effect does not change with T_p , however, because the particles do not grow with T_p owing to the confinement of voids (see table 1). Therefore, all absorption bands of porous Al₂O₃/Cr₂O₃ nanocomposites present a blue shift with increasing T_p .

After heating in H₂, in most cases, the absorption bands (p_2-p_4) of porous Al₂O₃/Cr₂O₃ nanocomposites show red shifts in comparison with those of porous Al₂O₃/Cr₂O₃ nanocomposites without heating in H₂ (see figure 3 and table 1). For nanostructured Cr₂O₃ bulks after heating in H₂ the red-shift phenomenon is also observed (see figure 2 and table 1). This red-shift phenomenon is attributed to the increase of the number of oxygen vacancies induced by reducing in H₂.

5. Conclusions

(1) In the wavelength range 200–800 nm four optical absorption bands (p_1-p_4) exist for each reflection spectrum of nanostructured Cr_2O_3 bulks and porous Al_2O_3/Cr_2O_3 nanocomposites. The p_2 , p_3 and p_4 peaks are induced by the Cr^{3+} $3d^3$ electronic transitions from the ground-state energy level, 4A_2 , to the excited-state energy levels, 4T_1 , 4T_2 and ${}^4T_2'$, which is formed from splitting of 4T_2 , respectively, and the p_1 band is closely associated with both the Cr^{3+} and Cr^{4+} ions.

(2) For nanostructured Cr_2O_3 bulks only red shifts of the absorption bands can be realized by heating the sample in highly pure H₂, while for porous Al₂O₃/Cr₂O₃ nanocomposites the positions of the absorption bands can be modulated. Thus, red shifts and blue shifts of the absorption bands are realized by heating the porous nanocomposites in H₂ and by increasing the pyrolysis temperature of Cr(NO₃)₃ in voids of the porous Al₂O₃ host when preparing porous Al₂O₃ host/Cr₂O₃ nanocomposites. This project is supported by the Climbing Program, Key project of National Fundamental Research and Natural Science Foundation of China.

References

- [1] McClure D S 1963 J. Chem. Phys. 38 2289
- [2] Hommerich U, Eilers H, Yen W M, Hayden J S and Aston M K 1994 J. Luminescence 60&61 119
- [3] Hou B, Ji X, Xie Y, Li J, Shen B and Qian Y 1995 Nanostruct. Mater. 5 529
- [4] Vassiliou J K, Mehrotra V, Russell M W, Giannelis E P, McMichael R D, Shull R D and Ziolo R F 1993 J. Appl. Phys. 73 5109
- [5] Weber M J 1981 Laser excited fluorescence spectroscopy in glass Laser Spectroscopy of Solids vol 49 ed W M Yen and P M Selzer (Berlin: Springer)
- [6] Fauchet P M, Tsai C C and Tanaka K (eds) 1990 Materials Issues in Microcrystalline Semiconductors (Pittsburgh, PA: Materials Research Society)
- [7] Smith D K and Mailhiot C 1990 Rev. Mod. Phys. 62 173
- [8] Merkt U and Sikorski C 1990 Semicond. Sci. Technol. 5 S182
- [9] Ramakrichna M V and Friesner R A 1991 Phys. Rev. Lett. 67 629